Northern Greenhouse Research Project

Exploring the Challenges of Greenhouseing in Northern Climates

Cold Climate and Technology Innovation Yukon Research Centre, Yukon College Prepared by

Treharne Drury

Outline

Background

- Vision
- Partners
- Timeline

Objectives

- Overcoming Challenges
- Adapting Innovations
- Learning Outcomes
- Research Opportunities

Incorporated Technology

- Quad glazing
- Stirling Engine
- LED grow lights
- VIP insulated shades
- Greenhouse Mechanization
- Thermal Storage and Heat Modulation

Into the Future

- Long Term Objectives
- Future Research

Background

Vision

- NGRP was developed between School of Access and Technology Innovation
- Provide school of access with a tool for educating students about growing and gardening
- Project was designed to provide hands-on education for the students and northern growing research opportunities
- In addition, the project was designed as a test bed for a variety of new technologies to make growing more efficient and compatible with the north
- Provide source of greens to the student cafeteria in winter

Background

- Partners
 - Technology Innovation (YRC)
 - Yukon College
 - School of Access
 - School of Trades, plumbing and carpentry
- Timeline
 - Stage 1, Building the greenhouse
 - Sept. 01, 2011 Dec. 31,2011
 - Stage 2, Commission Whispergen, Install mechanized shutters, begin growing plants
 - Jan. 01,2012 April 31, 2012

Objectives

- Overcoming Challenges
 - Northern growing poses unique challenges
 - Cold weather
 - Low light winter growing conditions
 - Moisture build up inside the greenhouse
 - Heating management of the greenhouse
 - Air exchanges and CO²
 depletion within the GH
 - Expensive heating costs

Objectives

Adapting Existing Technologies

- Yukon is a uniquely northern location for most of the technologies used
- Poses certain challenges in adapting these technologies to specific projects
 - HRV icing
 - Glazing never tested in these latitudes
 - VIP installation poses specific challenges, installation and protection
 - LED as supplemental lighting in low light winter months

Objectives

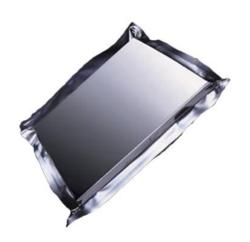
- Learning Outcomes
 - Light management shutters and LED grow lights
 - Thermal storage maximization
 - Moisture managementdrip irrigation and HRV
 - Cold and dark tolerant plants
- Research Opportunities
 - Greenhouse space can be made available to researchers

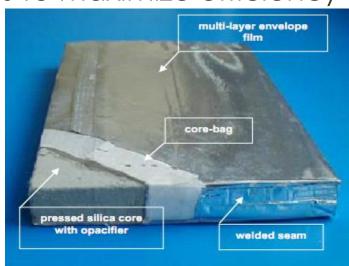
- Stirling Engine
 - WhisperGen, Personal Power Station PPS16
 - 800w electrical power
 - 5.5Kw thermal power
 - 19,000Btu
 - 90% efficient as CHP
 - 12% efficient as elec.
 - 78% efficient as heat
 - 0.75L/hr @ max out

- Quad-pane 25mm polycarbonate Glazing
 - R-4 greenhouse glazing Polygal Thermogal
 - Light transmission and R-Value equivalent to double glass
 - Light scattering better than without glazing

LED grow lights, Hydrogrow and LED Growmaster
 LED Growmaster – 9w/light

Hydrogrow – 155w/light





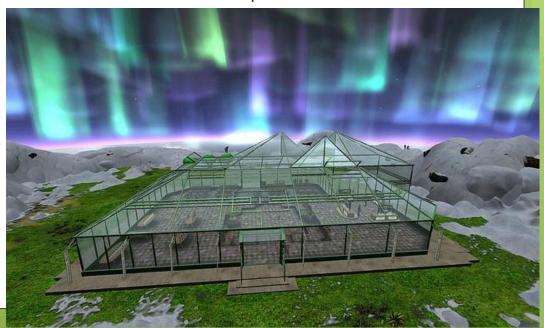
- VIP insulated shades
 - R-28 per 1/2inch
 - Peel and Stick
 - Mechanized shades to maximize efficiency

Incorporated Innovations

- GreenhouseMechanization
 - Greenhouse systems are mechanized for ease of operation
 - Watering (soil moisture)
 - Shutters
 - Lighting
 - Ventilation (CO₂ and RH)
 - Bed Temperature
 - Battery charging and Stirling operation

Incorporated Innovations

- Thermal Storage and Heat Modulation
 - Greenhouse utilizes thermal storage in the form of water under the beds to trap daytime heat and release it during the night



Into the Future

- Long Term Objectives
 - Hand over the greenhouse to School of Access for gardening and greenhouseing education
 - Have greenhouse available for research
 - Have greenhouse produce 12 months a year
 - Provide local producers with innovative adoptable ideas
- Future Research
 - Biochar and humic mine soils testing
 - Use as platform to assess new technology

